| 1. | Approximation by linear weak positive operators 用线性弱正算子逼近 |
| 2. | The theorems of positive operators of banach lattice and positive operators are an inseparable part of the general banach space and operator theory 另一方面,研究了hilbert格和banach格上正算子的一系列性质,得到了许多良好的结果。 |
| 3. | With relations of operators and matric , we will show that the inverse a - 1 of positive operator a is still a positive operator if and only if that a is a generalized permutation 利用算子和矩阵的关系,得到正算子t的逆是正算子的充要条件是t是广义置换算子。 |
| 4. | In the end we gather some results of ideals , bands , ideal irreducible and band irreducible . as an application we discuss the equivalent relations of the irreducible positive operators 最后研究了hilbert格的理想、带以及理想不可约、带不可约算子的性质,给出正算子不可约的几个等价条件。 |
| 5. | The first results of riesz space and positive operators go back to f . riesz ( 1929 and 1936 ) . since then positive operator theorems have always played an essential role on the subject of functional analysis and have been applied to some fields such as mathematical physics and economics 自从二十世纪三十年代, f . riesz首次提出riesz空间和正算子以来,正算子的研究一直成为人们关注的课题,并逐步把这一理论开拓到应用领域,使得正算子理论在数学物理,经济学方面得到广泛运用。 |
| 6. | In this thesis , the solution of kolmogorov backward differential equations in birth and death process theory has been proved to be well - posedness by using the theories and methods of linear operator co semigroup in functional analysis . and the existence of superior eigenvalue of the coefficient matrix of the equations has been studied by using the theories of positive operator and conjugate operator 论文主要用泛函分析中的线性算子c _ 0半群理论研究生灭过程理论中柯尔莫哥洛夫向后微分方程组解的适定性,及用正算子和共轭算子的理论和一些结论研究了该方程组系数矩阵算子的占优本征值的存在性问题。 |
| 7. | In this paper , we mainly discuss positive operators and some relevant problems . on the one hand , we investigate c0 semigroups on banach lattice , and obtain some properties of local spectral radius , the solution of operator equation , the decomposition of lattice space and the generators of semigroup and dual semigroup 本文主要从两个方面讨论正算子理论中的几个问题,一方面对banach格上c _ 0 -半群的性质进行了深入研究,利用半群的局部谱半径,得到了正算子方程有正解的条件。 |